

IB · **HL** · **Chemistry**

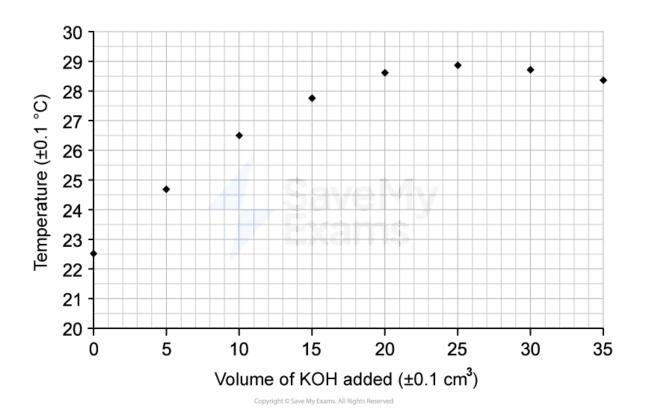
Practice Paper 1B

Scan here to return to the course

or visit savemyexams.com

Total Marks

/35



1 (a)	A student investigated the enthalpy change of neutralisation by gradually adding
	aqueous potassium hydroxide (KOH) to a known volume of aqueous ethanoic acid
	(CH ₃ COOH) in a polystyrene cup. A temperature probe recorded the temperature after
	each addition.

The following data were obtained:

Volume of KOH added (±0.1 cm ³)	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0
Temperature (±0.1 °C)	22.5	24.7	26.5	27.8	28.6	28.9	28.7	28.4

(b) A graph of temperature against volume of KOH added was plotted.

Estimate the volume of KOH added at which neutralisation is complete, based on the data.

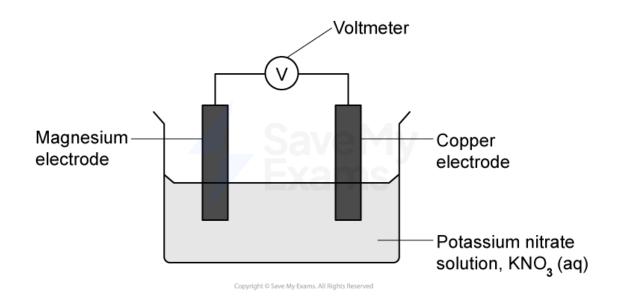
(1	m	ıaı	'k

(c) The concentration of the ethanoic acid was 1.00 mol dm⁻³, and the volume used was 25.0 cm^3 .

(1 mark)

Determine the number of moles of ethanoic acid in the cup before titration began.

(d) The student forgot to record the concentration of the KOH solution.


Describe how the temperature data and the enthalpy change of neutralisation (ΔH_{neut} = $-57.0 \text{ kJ} \text{ mol}^{-1}$) can be used to determine the concentration of the KOH solution.

		(3 marks)
(e)	Identify one assumption made in the method described in (d), and explain how affect the final value obtained.	it could
(f)	Suggest two improvements to the experimental method to reduce heat loss to	(2 marks)
	surroundings.	(2 marks)

2 (a) A student investigated how the distance between two electrodes affects the current in a voltaic cell. She used a magnesium electrode and a copper electrode, connected by wires to a voltmeter. Both electrodes were immersed in aqueous potassium nitrate (KNO₃) solution.

The experiment was repeated with two different concentrations of KNO₃: 0.50 mol dm⁻³ and 1.00 mol dm⁻³. For each trial, the student increased the distance between the electrodes from 2.0 cm to 10.0 cm and recorded the current.

A diagram of the setup is shown below.

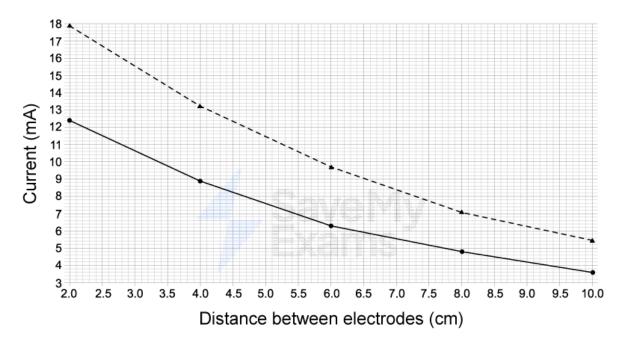
Identify the direction of electron flow in the external circuit and explain your answer.

(2 marks)

(b) (i) Write the half-equation for the reaction occurring at the magnesium electrode.

(ii) Explain whether the magnesium electrode acts as the anode or cathode.

(2 marks)


[1]

[1]

(c) Explain why the current is higher in the $1.00 \text{ mol dm}^{-3} \text{ KNO}_3$ solution than in the 0.50mol dm⁻³ solution.

(2 marks)

(d) The student's results are shown in the graph below.

Key: \longrightarrow = 0.50 mol dm⁻³ KNO₃ ---- = 1.00 mol dm⁻³ KNO₃

Copyright © Save My Exams, All Rights Reserved

(i) Use the graph to estimate the current for the 1.00 mol dm⁻³ solution when the electrodes are 6.0 cm apart.

[1]

(ii) Calculate the percentage increase in current at 4.0 cm when using the 1.00 mol dm⁻³ solution instead of the 0.50 mol dm⁻³ solution.

[2]

(3 marks)		
out ion movement and solution resistance.) Explain the shape of the graph using ide	(e)
(2 marks)		
Cu electrodes with platinum.) The student considered replacing the M	(f)
the reliability of the results.	(i) Explain whether this change would in	
[2]		
	(ii) Suggest one controlled variable (other concentration) that should remain the s	
[1]		
(21)		
(3 marks)		

3 (a) A student investigates the buffering effect of different concentrations of a weak acid and its conjugate base. The acid used is ethanoic acid (CH_3COOH), and the conjugate base is sodium ethanoate (CH₃COONa).

The student prepares three buffer solutions, each with a total concentration of 0.200 mol $\,\mathrm{dm}^{-3}$, but with varying ratios of acid to conjugate base. The p K_a of ethanoic acid is 4.76.

Buffer	[CH ₃ COOH] / mol dm ⁻³	[CH ₃ COO-] / mol dm ⁻³
А	0.150	0.050
В	0.100	0.100
С	0.050	0.150

 $(pK_a \text{ of } CH_3COOH = 4.76)$

(2 marks)

(b)	Explain why all three buffer solutions have the same total concentration but different pl
	values.

(2 marks

(c) The student tests the ability of each buffer to resist changes in pH. A small volume of 1.00 mol dm⁻³ HCl is added to each buffer, and the new pH is recorded:

Buffer	pH before	pH after HCl added
А	4.48	4.33
В	4.76	4.59
С	5.04	4.91

	Use the data to identify which buffer had the greatest buffering capacity against added acid, and explain your reasoning.
	(2 marks)
(d)	Buffer B is tested by adding a small amount of sodium hydroxide. The pH increases from 4.76 to 4.94.
	Explain why the pH of this buffer changes only slightly.
	(2 marks)
(e)	The student prepares a fourth buffer using 0.200 mol dm $^{-3}$ of CH $_3$ COONa only, with no CH $_3$ COOH.
	Predict whether this solution can act as a buffer and justify your answer.
	(2 marks)

